3.758 \(\int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=139 \[ -\frac{(2-2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{2 i a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

[Out]

((-2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]
]*Sqrt[Tan[c + d*x]])/d - ((2*I)*a*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (2*Cot[c + d*x]^(3/2)*(a
 + I*a*Tan[c + d*x])^(3/2))/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.283249, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {4241, 3548, 3545, 3544, 205} \[ -\frac{(2-2 i) a^{3/2} \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{2 i a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]
]*Sqrt[Tan[c + d*x]])/d - ((2*I)*a*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (2*Cot[c + d*x]^(3/2)*(a
 + I*a*Tan[c + d*x])^(3/2))/(3*d)

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3548

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(d*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f*m*(c^2 + d^2)), x] + Dist[a/(a*c - b*d), Int[(a
+ b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*
d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]

Rule 3545

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*b*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m - 1)*(a*c - b*d)), x] + Dist[(2*a^2)/(
a*c - b*d), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 i a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\left (2 a \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 i a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{\left (4 i a^3 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 i a \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\\ \end{align*}

Mathematica [A]  time = 1.13569, size = 135, normalized size = 0.97 \[ -\frac{4 i a \cos (c+d x) \sqrt{\cot (c+d x)} \left (e^{i (c+d x)} \left (-3+5 e^{2 i (c+d x)}\right )-3 \left (-1+e^{2 i (c+d x)}\right )^{3/2} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt{a+i a \tan (c+d x)}}{3 d \left (-1+e^{4 i (c+d x)}\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(((-4*I)/3)*a*(E^(I*(c + d*x))*(-3 + 5*E^((2*I)*(c + d*x))) - 3*(-1 + E^((2*I)*(c + d*x)))^(3/2)*ArcTanh[E^(I*
(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Cos[c + d*x]*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*(-1
 + E^((4*I)*(c + d*x))))

________________________________________________________________________________________

Maple [B]  time = 0.385, size = 1042, normalized size = 7.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

-1/3/d*2^(1/2)*a*(5*I*sin(d*x+c)*cos(d*x+c)*2^(1/2)+3*I*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((
cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)
*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+6*I*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(
d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)+6*I*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+6*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)*2^(1/2)-1)+6*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/
2)*2^(1/2)+1)+3*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*
sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c
)-1))-6*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)+5*2^(1/2)*cos(
d*x+c)^2-3*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d
*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))-6*I*((cos(
d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-4*I*2^(1/2)*sin(d*x+c)-2^(1/2)
*cos(d*x+c)-6*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)-6*((cos(d*
x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-3*((cos(d*x+c)-1)/sin(d*x+c))^(1
/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))-4*2^(1/2))*(cos(d*x+c)/sin(d*x+c))^(5/2)*(a*(I*sin(d*
x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*sin(d*x+c)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [B]  time = 2.36082, size = 1335, normalized size = 9.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/9*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(((18*I - 18)*a*cos(3*d*x + 3*c)
- (6*I - 6)*a*cos(d*x + c) - (18*I + 18)*a*sin(3*d*x + 3*c) + (6*I + 6)*a*sin(d*x + c))*cos(3/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) - 1)) + ((18*I + 18)*a*cos(3*d*x + 3*c) - (6*I + 6)*a*cos(d*x + c) + (18*I - 18)*
a*sin(3*d*x + 3*c) - (6*I - 6)*a*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(
a) + (((18*I + 18)*a*cos(2*d*x + 2*c)^2 + (18*I + 18)*a*sin(2*d*x + 2*c)^2 - (36*I + 36)*a*cos(2*d*x + 2*c) +
(18*I + 18)*a)*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*
cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (-(9*
I - 9)*a*cos(2*d*x + 2*c)^2 - (9*I - 9)*a*sin(2*d*x + 2*c)^2 + (18*I - 18)*a*cos(2*d*x + 2*c) - (9*I - 9)*a)*l
og(4*cos(d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) +
 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) - 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + ((((12*I
 - 12)*a*cos(d*x + c) - (12*I + 12)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + ((12*I - 12)*a*cos(d*x + c) - (12*I +
 12)*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 + (-(24*I - 24)*a*cos(d*x + c) + (24*I + 24)*a*sin(d*x + c))*cos(2*d*x
 + 2*c) + (12*I - 12)*a*cos(d*x + c) - (12*I + 12)*a*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) - 1)) + (((12*I + 12)*a*cos(d*x + c) + (12*I - 12)*a*sin(d*x + c))*cos(2*d*x + 2*c)^2 + ((12*I + 12)*a
*cos(d*x + c) + (12*I - 12)*a*sin(d*x + c))*sin(2*d*x + 2*c)^2 + (-(24*I + 24)*a*cos(d*x + c) - (24*I - 24)*a*
sin(d*x + c))*cos(2*d*x + 2*c) + (12*I + 12)*a*cos(d*x + c) + (12*I - 12)*a*sin(d*x + c))*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c)
+ 1)^(5/4)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.37188, size = 1010, normalized size = 7.27 \begin{align*} \frac{\sqrt{2}{\left (-20 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} + 12 i \, a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - 3 \,{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} + i \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right ) + 3 \,{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} \log \left (\frac{{\left (2 \, \sqrt{2}{\left (a e^{\left (2 i \, d x + 2 i \, c\right )} - a\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - i \, \sqrt{-\frac{8 i \, a^{3}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{2 \, a}\right )}{6 \,{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/6*(sqrt(2)*(-20*I*a*e^(2*I*d*x + 2*I*c) + 12*I*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - 3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-8*I*a^3/d^2)*log(1/2
*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^
(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + I*sqrt(-8*I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a)
+ 3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) - a)*sqrt(a/(e^(2
*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - I*sqrt(-8*
I*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \cot \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(5/2), x)